Propagation and interferometry of bright matter wave solitons

Nick Robins*1, Patrick Everitt , Mahasen Sooriyabandara , Gordon Mc
donald , and Carlos Kuhn

¹Quantum Sensors and Atomlaser Laboratory (ANU) – Department of Quantum Science, Australian National University,, Australia

Abstract

The creation and propagation of bright matter wave solitons in 85Rb will be discussed. Recent results on atom interferometry using these states will be presented, showing a dramatic improvement in fringe visibility around the soliton point. Results will be presented on an intriguing new observation of matter wave breathers - stable excited state solitons. Evidence, both from theory and experiment, will be presented suggesting that significant three-body scattering is present in this system. For example, in a non-interacting gas (zero s-wave scattering, $a_s=0$), the ratio of the centre of mass mode to the breathing mode is measured to be _~1.7, instead of the expected ratio of 2, an observation that is precisely modelled by a non-zero three body scattering rate. At $a_s<0$, stable breather solitons are observed, and here too, soliton existence and oscillation ratios are found to be consistent with the presence of three-body scattering. A discussion of implications for past and future experiments will be given.

^{*}Speaker